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SUMMARY

The ability to represent the world accurately relies on
simultaneous coarse and fine-grained neural infor-
mation coding, capturing both gist and detail of an
experience. The longitudinal axis of the hippocam-
pus may provide a gradient of representational gran-
ularity in spatial and episodic memory in rodents and
humans [1–8]. Rodent place cells in the ventral
hippocampus exhibit significantly larger place fields
and greater autocorrelation than those in the dorsal
hippocampus [1, 9–11], which may underlie a
coarser and slower changing representation of
space [10, 12]. Recent evidence suggests that
properties of cellular dynamics in rodents can be
captured with fMRI in humans during spatial naviga-
tion [13] and conceptual learning [14]. Similarly,
mechanisms supporting granularity along the long
axis may also be extrapolated to the scale of fMRI
signal. Here, we provide the first evidence for sepa-
rable scales of representation along the human
hippocampal anteroposterior axis during navigation
and rest by showing (1) greater similarity among
voxel time courses and (2) higher temporal autocor-
relation in anterior hippocampus (aHPC), relative to
posterior hippocampus (pHPC), the human homo-
logs of ventral and dorsal rodent hippocampus.
aHPC voxels exhibited more similar activity at each
time point and slower signal change over time than
voxels in pHPC, consistent with place field organiza-
tion in rodents. Importantly, similarity between
voxels was related to navigational strategy and
episodic memory. These findings provide evidence
that the human hippocampus supports an anterior-
to-posterior gradient of coarse-to-fine spatiotem-
poral representations, suggesting the existence
of a cross-species mechanism, whereby lower
neural similarity supports more complex coding of
experience.

RESULTS AND DISCUSSION

If fMRI voxel-wise activation patterns are influenced by the in-

crease in granularity stemming from larger place fields in anterior

hippocampus (aHPC) (the homolog of ventral hippocampus in

rodents) to smaller place fields in posterior hippocampus

(pHPC) (dorsal in rodents), their fMRI time courses should be

more similar to one another in aHPC, where the representations

would be coarser (Figures 1A and 1B) than in pHPC. In addition,

based on the reported increase in autocorrelation found in

rodent place cell firing along the dorsoventral axis [9], voxel

activation patterns may also show more autocorrelation over

successive time points in aHPC than in pHPC (Figure 1B).

To test the hypothesis that dynamics of hippocampal activity in

human fMRI reflect differences in representational scale along the

hippocampal long axis, we calculated (1) correlations between

voxel time courses within aHPC and pHPC (i.e., similarity in activ-

ity across voxels within an ROI; inter-voxel similarity, akin to [16])

and (2) stepwise autocorrelation of the fMRI signal for individual

voxelswithin aHPCandpHPC (i.e., similarity in eachvoxel’s activ-

ity across successive time points; temporal autocorrelation). We

predicted that both types of neural similarity would be higher in

aHPC compared to pHPC, corresponding to a coarser grain of

representation and more slowly changing signal over time. We

examined these measures during virtual reality navigation under

different conditions of navigational difficulty to investigate, for

the first time, neural dynamics underlying representational granu-

larity along the hippocampal axis in humans (Figure 1C).

Participants in the navigation task (N = 19; see STARMethods)

traversed routes in a familiar virtualized environment (Toronto,

Canada), using images from Google Street View (Figure 1C).

Each participant traversed 16 routes while undergoing fMRI.
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Figure 1. Overview of Experimental Methods and Analyses

(A) The hypothesized increase in representational scale along the anteroposterior axis is derived from rodent research suggesting a decrease from place field size

in the ventral (anterior in humans) to dorsal (posterior in humans) hippocampus.

(B) Anterior (red) and posterior (blue) hippocampal masks, split at the uncal apex (see [15]), overlaid on an example brain in native space.

(C) In experiment 1, participants navigated in 4 conditions: familiar paths, unfamiliar paths, familiar paths where the environment was left-right reversed (mirrored),

and unfamiliar paths where participants followed an arrow to navigate (GPS). The conditions scaled in navigational difficulty (GPS < familiar < unfamiliar <

mirrored). In experiment 2, participants rested with their eyes closed and later reported howmuch time they spent engaging in episodic simulation (thinking about

future episodes or remembering the past).

(D) Conceptualized data to illustrate inter-voxel similarity and temporal autocorrelation measures, where each line represents the time course of an individual

voxel. Inter-voxel similarity was calculated as themean of all unique time course correlations for each region, hemisphere, and condition per participant (m(r)). This

is akin to measures of functional connectivity, calculated between voxels within a region of interest (ROI). Temporal autocorrelation was derived by calculating

pairwise correlations for all voxels in an ROI across successive time points (TRs), stepwise, throughout an entire functional run. The mean of the resulting

r-coefficients was calculated for each region, hemisphere, and condition per participant.
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Bilateral hippocampal masks (defined using FreeSurfer) [17]

were divided into anterior and posterior portions based on the

location of the uncal apex for each participant, in their native

space [2]. Using these masks, we then calculated (1) inter-voxel

similarity and (2) temporal autocorrelation (Figure 1B).

To test for differences in inter-voxel similarity along the hippo-

campal axis, we conducted a 2 (axis: anterior and posterior) 3 2

(hemisphere: left and right) 3 4 (condition: familiar, unfamiliar,

global positioning system [GPS], and mirrored; Figure 1C)

repeated-measures ANOVA. Inter-voxel similarity was signifi-

cantly greater in aHPC, relative to pHPC (F(1, 18) = 49.17; p <

0.001; Figure 2A), but there were no significant main effects

of hemisphere (F(1, 18) = 3.44; p = 0.08) or condition (F(3, 54) =

1.54; p = 0.214). No interactions were significant (all

p values R 0.11).

To explore differences in temporal autocorrelation, an iden-

tical 2 (axis)3 2 (hemisphere)3 4 (condition) repeated-measures
2 Current Biology 28, 1–7, July 9, 2018
ANOVA was conducted. Like inter-voxel similarity, temporal

autocorrelation was significantly greater in aHPC, relative to

pHPC (F(1, 18) = 15.51; p < 0.001; Figure 2D). There was no

main effect of hemisphere (F(1, 18) = 0.683; p = 0.419) and a

trending interaction between axis and hemisphere (F(1, 18) =

3.68; p = 0.071; see Figure S4B). There was a significant main

effect of condition (F(3, 54) = 21.86; p < 0.001), whereby autocor-

relation scaled with increasing navigational difficulty. This effect

as well as further effects of route-specific subjective difficulty are

reported in Figure S2. No other interactions were significant (all

p values > 0.19).

Critically, anteroposterior distinctions in hippocampal dy-

namics were related to navigational behavior. Participants’

self-reported propensity to rely on map-based strategies in

navigation was significantly negatively correlated with inter-

voxel similarity in pHPC (r = �0.526; p = 0.021) and trended in

the same direction in aHPC (r = �0.403; p = 0.087; Figure 2B,



Figure 2. Hippocampal Long Axis Properties during Virtual Reality Navigation

(A) Inter-voxel similarity was significantly greater in aHPC, relative to pHPC, during navigation (r-coefficients were z-transformed before comparisonsweremade).

(B) Inter-voxel similarity in pHPC significantly negatively correlated with the tendency to use map-based navigation strategies (relative to landmark-based

strategies).

(C) Inter-voxel similarity in pHPC, but not aHPC, negatively correlated with in-scan navigational efficiency.

(D) Autocorrelation was significantly greater in aHPC, relative to pHPC during navigation.

(E) No significant relationships between temporal autocorrelation and navigation tendency were found.

(F) Unlike inter-voxel similarity, autocorrelation showed no relationship with in-scan navigational efficiency. For further analyses, please refer to Figure S2.

(G) Inter-voxel correlation matrices for a sample participant (aHPC and pHPC in the left hemisphere; collapsed across navigation conditions because no

significant main effect of condition was found). Voxels in aHPC were consistently more correlated with one another than voxels in pHPC within each participant.

For individual matrices for all participants, see Figure S1.

***p < 0.001; *p < 0.05. All error bars are SEM. See also Figure S4 and Tables S2 and S3.
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full questionnaire in STARMethods). Lower similarity among hip-

pocampal voxels may imply finer-grained coding, as the signal is

less redundant and can contain more complex information.

Reduced similarity may relate to a greater propensity to use

more complex, map-based navigational strategies that rely on

discrimination between fine-grained spatial representations

[18]. To support this notion, we also found a negative trend in

the correlation between pHPC inter-voxel similarity and naviga-

tional efficiency in the navigation task (r = �0.413; p = 0.079),

where more efficient navigators had lower inter-voxel similarity

in pHPC. No such relationship was observed in aHPC (r =

0.199; p = 0.414; Figure 2C). Navigational efficiency was calcu-

lated as the average decrease in Euclidean distance to the

goal between steps (greater difference therefore indicates

greater navigational efficiency). Correspondingly, there was a

significant relationship between self-reported mapping propen-

sity and navigational efficiency (r = 0.560; p = 0.013), indicating

that participants with greater mapping propensity navigated

more efficiently toward the goal.

There was no significant relationship between map-based

navigation and temporal autocorrelation in pHPC (r = �0.207;

p = 0.394) and no significant relationship with aHPC (r =
�0.217; p = 0.372; Figure 2E). There was no significant relation-

ship between navigational efficiency and temporal autocorrela-

tion in aHPC (r = 0.146; p = 0.550) or pHPC (r = 0.086; p =

0.726; Figure 2F).

Inter-voxel similarity and temporal autocorrelation were not

significantly correlated in aHPC (r = 0.217; p = 0.372) or pHPC

(r = �0.133; p = 0.589), suggesting that they capture separable

aspects of hippocampal coding. Inter-voxel similarity values in

aHPC and pHPC were not significantly correlated (r = 0.295;

p = 0.220), but autocorrelation varied consistently along the

hippocampal axis (r = 0.879; p < 0.001).

To establish whether these findings were task driven (i.e., nav-

igation dependent) or whether they reflect a task-independent

property of hippocampal dynamics, we examined the same

measures in a resting state dataset carried out on a separate

group of 20 participants [19]. Resting state has no explicit

demand on behavior, although continuous dynamics can still

be measured, making it an ideal contrast to navigation. If the

observed distinction in anteroposterior hippocampal signal

dynamics extends from navigation to rest, it would provide

clear evidence that this anteroposterior distinction is not depen-

dent on navigation. To this effect, we conducted 2 (axis) 3 2
Current Biology 28, 1–7, July 9, 2018 3



Figure 3. Hippocampal Long Axis Properties during Task-free Rest

(A) Inter-voxel similarity was significantly greater in aHPC, relative to pHPC during rest.

(B) Inter-voxel similarity in pHPC significantly negatively correlated with self-reported time spent in episodic simulation (i.e., thinking about the past or simulating

the future).

(C) Autocorrelation was not significantly different between aHPC and pHPC at rest.

(D) No significant relationships between temporal autocorrelation and episodic simulation were found. For further analyses, please refer to Figures S2 and S3.

(E) Inter-voxel correlation matrices for a sample participant (aHPC and pHPC in the left hemisphere). Voxels in aHPC were consistently more correlated with one

another than voxels in pHPC within each participant. For individual matrices for all participants, see Figure S1.

***p < 0.001; *p < 0.05. All error bars are SEM. See also Figure S4 and Tables S2 and S3.
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(hemisphere) repeated-measures ANOVAs on both inter-voxel

similarity and temporal autocorrelation, using participant-spe-

cific aHPC and pHPC masks generated in native space using

an identical procedure to the previous navigation analysis.

As in navigation, resting inter-voxel similarity was significantly

greater in aHPC, relative to pHPC (F(1, 19) = 17.04; p < 0.001;

Figure 3A). There was no significant effect of hemisphere

(F(1, 19) = 0.528; p = 0.476) and no significant axis by hemisphere

interaction (F(1, 19) = 0.100; p = 0.755).

In contrast to navigation, there was no significant difference in

resting temporal autocorrelation between aHPC and pHPC

(F(1, 19) = 0.418; p = 0.526; Figure 3C), nor was there a significant

main effect of hemisphere (F(1, 19) = 0.646; p = 0.431) or axis by

hemisphere interaction (F(1, 19) = 1.34; p = 0.261). The absence

of a continuous external context during rest, unlike during

navigation, may underlie the lack of temporal autocorrelation

effects in the hippocampus (for more detailed lag analyses,

see Figure S2).

These data suggest that the observed distinction in hippocam-

pal signal dynamics along the anteroposterior axis is not entirely

navigation dependent, where some of these properties may be

fundamental to aHPC and pHPC across task and resting state.
4 Current Biology 28, 1–7, July 9, 2018
However, as the anteroposterior distinction was most robust

during navigation, it appears to be modulated by ongoing task

demands.

Although resting state scans involve no explicit processing

demands, the degree to which participants engage in typically

hippocampus-dependent thought, such as thinking about the

past or the future, may vary [19]. Participants’ self-reported in-

scan episodic simulation (i.e., the percentage of the resting

scan where they were either remembering past or imagining

future episodes) was significantly negatively correlated with in-

ter-voxel similarity in pHPC (r = �0.606; p = 0.005), but not

aHPC (r = 0.200; p = 0.399), akin to the relation found for map-

based strategies in the navigation data (Figure 3B). More vari-

ability in neural signal during episodic simulation may reflect

more dynamic content or increased episodic detail. There

was no significant relationship between temporal autocorrelation

and self-reported episodic simulation in either aHPC (r =�0.049;

p = 0.837) or pHPC (r = �0.183; p = 0.441; Figure 3D).

Inter-voxel similarity and temporal autocorrelation were again

not significantly correlated with one another in aHPC (r = 0.026;

p = 0.913) or pHPC (r = 0.171; p = 0.470) at rest. As in navigation,

therewas no significant correlation between inter-voxel similarity



Figure 4. Representational Gradients along

the Anteroposterior Axis

Mean inter-voxel similarity and temporal autocor-

relation model fits, corrected for distance between

voxels (see Figure S3) within each segment, plotted

according to their magnitude along the hippocam-

pal long axis in (A) navigation and (B) resting state.

See also Figure S2 and Table S1.
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values in aHPC and pHPC (r =�0.087; p = 0.715) but a significant

relationship between temporal autocorrelation in aHPC and

pHPC (r = 0.926; p < 0.001).

To visualize differences in inter-voxel similarity along the hip-

pocampal axis with finer spatial resolution, bilateral hippocampal

masks were split into 6 segments with inter-voxel similarity

calculated for each segment separately (Figure 4A). Inter-voxel

similarity was again generally higher in segments anterior to

the uncal apex relative to posterior segments, supporting the

initial dichotomy (for details, see Supplemental Information;

Figure S3). Temporal autocorrelation appeared to have a

smooth linear gradient with the highest autocorrelation in the

head of the aHPC and least in the most posterior segments of

the pHPC (Figure 4; for details, see Supplemental Information;

Figure S3).

A series of control analyses were conducted to ensure that the

observed anteroposterior differences in signal similarity were not

due to differences in hippocampal shape along the longitudinal

axis or overall differences in temporal or spatial signal-to-noise

ratio (SNR) between the aHPC and pHPC. Results indicated

that the differences between aHPC and pHPC in inter-voxel

similarity and temporal autocorrelation could not be explained

by hippocampal shape or spatial or temporal SNR alone (for de-

tails, see Figure S3 and Tables S1, S2, and S3). In both datasets,

temporal and spatial SNR were higher in pHPC, but when SNR

was added to our model, the main effect of axis on inter-voxel

similarity and temporal autocorrelation remained unchanged

(Tables S2 and S3). Additional control analyses further deter-

mined that the coarse-to-fine distinction along the anteroposte-

rior axis was unique to the hippocampus and not present in the

neighboring parahippocampal cortex (for details, see Figure S4).

In combination, these control analyses provide strong support

for a distinct pattern of spatiotemporal dynamics between the

anterior and posterior hippocampus in humans.

Using two measures to investigate human hippocampal activ-

ity during navigation and rest, we show evidence for a robust
distinction between anterior and posterior

hippocampal dynamics. Neural dynamics

in pHPC were not only more variable at

each moment in time (inter-voxel similar-

ity) but also shifted more rapidly between

successive time points (temporal auto-

correlation), relative to aHPC during

navigation. Overall levels of temporal

autocorrelation were found to scale with

navigational difficulty, but the difference

between aHPC and pHPC remained sta-

ble. This suggests that greater naviga-

tional effort enhances the degree to which
unfolding spatiotemporal context must be maintained but does

not differentially modulate signal in aHPC and pHPC. In contrast,

inter-voxel similarity differences in aHPC and pHPC were not

affected by navigational condition, suggesting that signal

complexity within these brain regions is robust to fluctuations

in task demands. However, although the difference in inter-voxel

similarity between aHPC and pHPC remained significant during

rest, the overall level of inter-voxel similarity was significantly

lower than during navigation (Figure S4). The latter finding sug-

gests that, when there is no goal direction, as is the case in

rest, neural activity is relatively uncoordinated compared to ac-

tivity in structured navigational tasks. No significant difference

was found in temporal autocorrelation between aHPC and

pHPC (though see Figures S2 and S3). This pattern was unique

to the hippocampus and not observed in the parahippocampal

cortex, a region in close anatomical proximity to the hippocam-

pus and strongly functionally connected with it [20], suggesting

the anteroposterior difference in neural dynamics reported

here is a fundamental and distinctive organizing property of the

hippocampus. Although this control analysis suggests that the

same signal properties are not present across the entire medial

temporal lobes (MTLs), precise characterization of signal proper-

ties in cortical and subcortical inputs to the hippocampus is

necessary in future investigations, ideally in combination with

fine-grained functional connectivity analyses.

The difference in spatiotemporal representational granularity

along the hippocampal axis may therefore rely on underlying

neural dynamics, which in aHPC, relative to pHPC, produce (1)

greater similarity between individual voxel time courses and (2)

slower changes in activity. These results also suggest that the

cellular mechanisms observed in rodents [9, 10] may have

effects that scale up to the timescales of fMRI, underlying the re-

ported findings of increased representational granularity along

the axis in memory [15], narratives [3, 4], and spatial navigation

[6, 21]. Greater neural similarity in aHPC supports the notion

that voxels remain in the same state for longer periods of time
Current Biology 28, 1–7, July 9, 2018 5
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than in pHPC, which may enable effective representation of

slow-changing global context signals, such as the gist of an

episode or a large spatial context. Our results generally provide

evidence for a coarse-to-fine gradient along the hippocampal

long axis. Temporal autocorrelation showed a clear linear

decrease in similarity from aHPC to pHPC in both navigation

and resting state, but inter-voxel similarity only showed a linear

trend in navigation once we accounted for differences in

hippocampal shape (Figure S3). Further treatment of this issue

with higher resolution imaging of the hippocampus is warranted

to better understand the organization of the hippocampal long

axis.

Critically, differences in signal dynamics between aHPC and

pHPC were also reflected in behavior across both navigation

and resting datasets. Greater propensity for map-based naviga-

tion strategies was related to lower hippocampal inter-voxel

similarity. Greater propensity for map-based navigation strate-

gies was related to lower hippocampal inter-voxel similarity.

Lower similarity may suggest representation of more complex

information content, consistent with the use of cognitive maps

[18], though this relationship warrants empirical examination.

Lower inter-voxel similarity in pHPC signal also corresponded

to increased self-reported episodic memory processing during

rest. Remembering past and imagining future episodes reliably

recruits regions of the MTL [19, 22], and greater dissimilarity

among hippocampal voxels may reflect increased elaboration

in episodic memory [15] and simulation [23].

At amore general level, our findings suggest that differences in

the intrinsic dynamics of hippocampal neurons may underlie or

support the cognitive functions mediated by them, such as as-

pects of spatial navigation and episodic memory. Differences

in whole-brain and intra-hippocampal functional connectivity

between aHPC and pHPC may also contribute to specialization

along the long axis of the hippocampus [20, 24, 25]. Robust

differences in representational scale between aHPC and

pHPC were found despite the fact that our measures did not

directly manipulate demands on granularity per se. Future

studies are needed to determine whether changes in the repre-

sentational demands of the task will be reflected in changes in

signal granularity as assessed by inter-voxel similarity and

temporal autocorrelation or whether changes in task demands

will merely determine where along the axis activation is most

pronounced.

The novel evidence presented here supports a cross-species

generalization of hippocampal function, revealing a potential

fundamental principle by which the hippocampus codes

temporally extended experiences. Applying the approach to

processing dynamics of hippocampus reported in this study to

any temporally extended fMRI dataset opens new doors for

exploring potential differential trajectories in aging and disease

and individual differences in normal memory and cognition.
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Software and Algorithms

Inter-voxel Similarity & Temporal
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Custom software https://github.com/ivabrunec/Voxel_Temporal_

Patterns

MATLAB 2014b MathWorks [26] https://www.mathworks.com

SPM Wellcome Department of Cognitive

Neurology, London, UK [27]

http://www.fil.ion.ucl.ac.uk/spm/

FSL 5.0.9 FMRIB Software Library [28] https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

AFNI [29] https://afni.nimh.nih.gov/

R version 3.4.2, RStudio interface [30, 31] https://www.r-project.org/

MCMCPack [32] http://www.jstatsoft.org/v42/i09/

Corrplot [33] http://CRAN.R-project.org/package=corrplot

E-Prime [34] http://www.pstnet.com

Psychophysics Toolbox [35] http://psychtoolbox.org/

nlme [36] https://cran.r-project.org/web/packages/nlme/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Iva

Brunec (iva.kristlbrunec@mail.utoronto.ca).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experiment 1: Virtual Route Navigation
Subjects

Twenty-two healthy right-handed volunteers were recruited. One participant was excluded because of excessive difficulty with the

task (i.e., repeatedly getting lost). Two additional participants were excluded due to incomplete data or technical issues. Exclusions

resulted in 19 participants who completed the study (9 males; mean age 22.58 years, range 19-30 years). All participants had lived in

Toronto for at least 2 years (M = 10.45, SE = 1.81). All participants were free of psychiatric and neurological conditions. All participants

had normal or corrected-to-normal vision and otherwise met the criteria for participation in fMRI studies. Informed consent was

obtained from all participants in accordance with Rotman Research Institute at Baycrest’s ethical guidelines. Participants received

monetary compensation upon completion of the study.

Experiment 2: Resting State
Subjects

A separate set of twenty healthy right-handed volunteers were recruited. All participants who were recruited completed the study

(9 males; mean age 22.58 years, range 19-30 years). A 6-minute resting state scan was collected per participant at the beginning

of a longer memory experiment (see [19]). All were native English speakers, and free of any psychiatric or neurological conditions.

Informed consent was obtained from all participants in accordance with the Rotman Research Institute at Baycrest’s ethical

guidelines. Participants received monetary compensation upon completion of the study.

METHOD DETAILS

Experiment 1: Virtual Route Navigation Procedure
City Virtualization Materials

A custom software suite was designed to access the first-person images from Google Street View, which was used to download an

approximately 423 27 km region of Toronto, Canada. Images were used to reconstruct a photorealistic, virtual simulation of Toronto

(see Navigation Task below).
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Prescan Route Building

There were four conditions, based on increasing navigational difficulty: GPS, Familiar, Unfamiliar, and Mirrored. The routes were

constructed prior to the date of scanning: participants built routes with researcher assistance, using a computer program which

showed overhead maps of Toronto. Participants defined 8 routes with which they were highly familiar, and 4 routes with which

they were less familiar. Because participants varied in their familiarity with Toronto, high and low familiarity routes for each participant

were not uniform, and hence these routes varied in terms of geography and design from participant to participant. For low familiarity

routes (Unfamiliar condition), participants were asked to choose two places or landmarks in Toronto with which they were familiar,

but between which they had never directly traveled. For the highly familiar routes (Familiar condition), participants were asked to pro-

duce their most familiar routes between their personally common destinations in Toronto (e.g., home to school, home to work, etc.).

Without input from participants, 4 of the 8 highly familiar routes were selected by the researcher to bemirrored. Themotivation for the

Mirrored condition was to gain insight into hippocampal processing under high navigational difficulty, such as when reconfiguring

familiar routes. Participants thus had to rely on their hippocampal representations and consider the relations between landmarks.

Themirror manipulation involved flipping the visual image on the computer screen left-to-right, thus functionally flipping participants’

navigational decisions. Additionally, a set of 4 routes in areas of Toronto with which the participant reported no previous experience

was created by the researcher to be used in the baseline (GPS) condition.

These conditions were thus designed to modulate task demands by increasing navigational difficulty.

Prescan Interview

On the day of the experiment, participants first completed a prescan interview and practice session. The interview included a survey

to assess participants’ propensity and ability to use maps for navigation and the Santa Barbara Sense of Direction Scale (SBSOD)

[37], to obtain a measure of navigational ability. This was followed by a detailed description of the navigation task along with practice

trials with routes not used in scanning. There was no significant correlation between SBSODS scores and inter-voxel similarity in

aHPC (r = 0.214, p = 0.379) or pHPC (r = -.266, p = 0.272). There was a trending correlation between SBSODS scores and temporal

autocorrelation in aHPC (r = 0.451, p = 0.053) and no significant correlation in pHPC (r = 0.292, p = 0.225).

Navigational Strategies Questionnaire

The navigational strategies questionnaire, used to assess propensity for map-based navigation, is reproduced here:

Note: Each response had an answer corresponding to a map-based navigation strategy or characteristic (indicated in bold) and

one corresponding to a non-map/scene-based strategy (underlined). The mapping tendency was calculated as the difference

between the number of map-based answers and non-map-based answers. Some questions had a third alternative, which was

not coded.

This questionnaire contains questions about your experience navigating, the strategies you use, and what helps you to navigate.

Circle the answer for each question that best describes how you navigate, or describe your answer in the space beside ‘‘Other’’ if

neither applies.

1. When planning a route, do you picture a map of your route or do you picture scenes of what you will see along the way?

Map Scenes Other: __________________

2. Do you consider yourself a good navigator?

Yes No

3. Do you find it easy to read and use maps?

Yes Somewhat No

4. How often do you get disoriented while finding your way around?

Very often Somewhat often Very rarely

5. When thinking about a familiar street, how well can you picture the buildings along it?

Very clearly Somewhat clearly Hardly at all

6. Would you give directions to a friend in terms of landmarks (i.e., when you see the subway stop, turn left?) or in terms of map

directions (i.e., walk north four blocks, then turn left?)?

Landmarks Map Directions Other: ___________________

7. Do you picture traveling a route on street level or from a bird’s eye view?

Street-level Bird’s Eye View Other: __________________

8. When navigating in an area you know well, do you usually just know where to go or do you need to look around at the

surroundings to decide (e.g., coming out of a subway station)?

Know it Some of each Need to look around

9. When traveling along a new route, do you usually remember what buildings you’ve passed?

Yes Somewhat Rarely

10. Would you prefer to navigate using a list of directions or a map?

Directions Map No preference

11. Do you use landmarks (i.e., familiar buildings) to orient yourself when navigating?

Often Sometimes Rarely

12. Do you find you’re flexible navigating along routes (i.e., you can take new shortcuts easily), or do you prefer to follow the same

path every time?
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Flexible Somewhat flexible Prefer the same route

13. How easily could you draw a map of an area of the city that you know well?

Very easily Somewhat easily Not easily

14. Do you think that you navigate by following a mental map, or working on scene at a time?

Maps Scene at a time Other

Navigation Task

The navigation software was written in MATLAB v7.5.0.342 and used the PsychToolbox v3.0.10 [26, 35]. The software used first-per-

son images from Google Street View to allow participants to walk through a virtual Toronto. Navigation was controlled using three

buttons: left, right, and forward. A ‘‘done’’ button allowed participants to indicate that they had completed a route. The task was pro-

jected on a screen in the bore of the scanner viewed by the participants through a mirror mounted inside of the head coil.

Participants navigated 16 routes: 4 Familiar, 4 Unfamiliar, 4 Mirrored, and 4 GPS baseline routes. The order of routes was random-

ized for each participant. On each route, except GPS routes, participants were given a destination and had to navigate toward that

destination. Participants navigated from a first-person, street-level perspective. GPS trials involved no goal-directed navigation;

instead, participants followed a dynamic arrow (see Figure 1C).

Every route contained 3-4 turns andwas 2-10 km long. The average run (route) lengthwas 137.6 TRs (2 s TRs). The average number

of TRs was lowest in the GPS condition (M = 92.13, SD = 17.44), followed by the familiar condition (M = 136.45, SD = 39.18), the

mirrored condition (M = 155.73, SD = 36.84), and the unfamiliar condition (M = 158.78, SD = 32.13). An analysis controlling for route

length is reported in Supplemental Information (see legend for Figure S2A). We ran a linear mixed effects model examining autocor-

relation and inter-voxel similarity on each run. We extracted the number of TRs for each route, performed a median split and used

length (short versus long runs) as a categorical predictor, along with axis (aHPC versus pHPC), hemisphere (L versus R), and con-

dition (GPS, Familiar, Unfamiliar, Mirrored), with subjects as a random factor.

The average navigational efficiency differed between conditions, such that participants navigated most efficiently (greatest

decrease in Euclidean distance to goal per step) during route following (GPS) (M = 11.04, SD = 1.56), followed by familiar routes

(M = 10.45, SD = 2.06), unfamiliar routes (M = 7.90, SD = 2.54), and were least efficient at navigating mirrored routes (M = 4.97,

SD = 2.84). Navigational efficiency therefore decreased as the condition-level navigational difficulty increased.

After completing each route, participants provided two behavioral ratings. They rated how familiar each route felt, and how difficult

they found it to navigate on a scale from 1-9 (where 1would correspond to least familiar andmost difficult, respectively). For example,

two routes might have different levels of familiarity despite both being in the Familiar condition. As expected, the average reported

familiarity scaled as expected: 1) Familiar condition (M = 7.0, SD = 1.79), 2) Mirrored condition (M = 5.36, SD = 2.69), 3) Unfamiliar

condition (M = 4.35, SD = 2.38), 4) GPS condition (M = 3.0, SD = 1.06). Self-reported familiarity ratings of individual routes therefore

corresponded to the experimental manipulation. The GPS condition was, however, rated as the easiest (M = 7.2, SD = 1.46), followed

by the Familiar condition (M = 6.98, SD = 2.05), Unfamiliar condition (M = 4.35, SD = 2.66), and the Mirrored condition, which was

subjectively the most difficult (M = 3.97, SD = 2.42).

These ratings suggest that the four conditions differed in terms of their navigational difficulty, such that GPS routes were subjec-

tively least demanding to navigate, and Mirrored routes were most demanding. An analysis of temporal autocorrelation split by

route-specific subjective difficulty is reported in Supplemental Information (Figure S2). We performed a median split of difficulty rat-

ings within each condition. To investigate subjective difficulty on each route, we entered the rating category resulting from themedian

split (easy versus difficult) for each route as a predictor in a linear mixed effects model, along with axis, hemisphere, and condition as

predictors, and subjects as a random factor. We chose not to explore familiarity ratings, as they were collected to confirm the con-

dition manipulation (GPS routes least, Familiar routes most familiar; there were almost no familiar GPS routes).

fMRI Image Acquisition

Participants were scanned with a 3T Siemens MRI scanner at Baycrest’s Rotman Research Institute. A high-resolution 3D MPRAGE

T1-weighted pulse sequence image (160 axial slices, 1 mm thick, FOV = 256 mm) was first obtained to register functional maps

against brain anatomy. Functional imaging was performed to measure brain activation by means of the blood oxygenation level-

dependent (BOLD) effect. Functional T2*-weighted images were acquired using echo-planar imagine (30 axial slices, 5 mm thick,

TR = 2000 ms, TE = 30 ms, flip angle = 70 degrees, FOV = 200 mm). The native EPI resolution was 64 3 64 with a voxel size of

3.5mm x 3.5mm x 5.0mm. Images were first corrected for physiological motion using the Analysis of Functional NeuroImages

[29]. All subsequent analysis steps were conducted using the statistical parametric mapping software SPM12 [27]. Preprocessing

involved slice timing correction, spatial realignment and co-registration, with a resampled voxel size of 3mm isotropic, with no spatial

smoothing. As all of our analyses rely on covariance, we additionally regressed out the mean time-courses from participant-specific

white matter, and cerebrospinal fluid masks, alongside estimates of the 6 rigid bodymotion parameters from each EPI run. To further

correct for the effects of motion which may persist despite standard processing [38], an additional motion scrubbing procedure was

added to the end of our preprocessing pipeline [39]. Using a conservativemultivariate technique, time points that were outliers in both

the six rigid-body motion parameter estimates and BOLD signal were removed, and outlying BOLD signal was replaced by interpo-

lating across neighboring data points. Motion scrubbing further minimizes any effects of motion-induced spikes on the BOLD signal,

over and beyond standard motion regression, without leaving sharp discontinuities due to the removal of outlier volumes (for details,

see [39]).
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Experiment 2: Resting State Procedure
After an anatomical MRI scan, participants first completed a standard 6-minute resting scan (180 2 s TRs) in which they were asked to

keep their eyes closed and remain still, relaxed, and awake. Theywere also allowed to think freely, without any explicit constraints (for

additional details, see [19]). E- Prime software (v2, [34]) was used to present the instructions for the functional runs, projected on a

screen in the bore of the scanner viewed by the participants through a mirror mounted inside of the head coil. A post-experiment

interview was conducted, during which we also asked participants to estimate what percentage of time they spent imagining

future/remembering past episodes, or engaging in less-specific mind-wandering during the resting scan.

fMRI Image Acquisition

Participants were scanned with a 3T Siemens MRI scanner at Baycrest’s Rotman Research Institute. A high-resolution 3D MPRAGE

T1-weighted pulse sequence image (160 axial slices, 1 mm thick, FOV = 256 mm) was first obtained to register functional maps

against brain anatomy. Functional imaging was performed to measure brain activation by means of the blood oxygenation

level-dependent (BOLD) effect. Functional T2*-weighted images were acquired using echo-planar imagine (30 axial slices,

3.5 mm thick, TR = 2000 ms, TE = 24 ms, flip angle = 70 degrees, FOV = 20 cm2). The native EPI resolution was 64x64 with a voxel

size of 3.5mm x 3.5mm x 3.5mm, with a 0.5 mm gap. Images were acquired using an oblique orientation (30 degree clockwise to the

anterior–posterior commissure axis) to correct for signal dropout observed in the ventral medial prefrontal cortex. All subsequent

analysis steps were conducted using the statistical parametric mapping software SPM8 [27]. Preprocessing involved slice timing

correction, spatial realignment, and co-registration with a resampled voxel size of 3 mm isotropic with no smoothing. As all of our

analyses rely on covariance, we additionally regressed out the mean time-courses from participant-specific white matter, and

cerebrospinal fluid masks, alongside estimates of the 6 rigid body motion parameters from each EPI run. Again, to further correct

for the effects of motionmay persist despite standard processing [38] an identical additional motion scrubbing procedure was added

to the end of our preprocessing pipeline [39]. Using a conservativemultivariate technique, time points that were outliers in both the six

rigid-body motion parameter estimates and BOLD signal were removed, where the BOLD signal was interpolated across using

neighboring data points. Motion scrubbing further minimizes any effects of motion-induced spikes on the BOLD signal, over and

beyond standard motion regression, without leaving sharp discontinuities due to the removal of outlier volumes (for details, see [39]).

QUANTIFICATION AND STATISTICAL ANALYSIS

fMRI Analysis: Inter-Voxel Similarity and Temporal Autocorrelation
FSL [28] (fslmeants) was used to extract separate voxelwise time courses per participant, per hippocampal mask, per EPI (i.e., a run

of navigation). These hippocampal voxelwise time courses consisted of estimates of brain activity per TR per voxel from each

participant-specific hippocampal mask, and were the basis of all subsequent analyses. All subsequent analyses were conducted

using R and RStudio v.1.0.136 [30, 31]. Voxelwise activity estimates were z-scored per voxel, run, and participant. This ensured

that each voxel’s time course of activity was mean centered and on the same scale. To determine the neural similarity in activity

across all voxels in the head and tail of the hippocampus, which we will refer to as inter-voxel similarity, we calculated the Pearson

correlations between each pair of voxels in each of our four masks (i.e., head and tail, per hemisphere), generating four similarity

matrices per participant. Inter-voxel similarity captures the correlation in activity across separate voxels in an ROI, thus providing

a summary statistic reflecting the similarity in signal from spatially separable voxels in an ROI. This procedure is identical to standard

approaches of calculating functional connectivity during resting fMRI, but here it is employed at the voxel level within an anatomical

mask rather than the more common ROI-ROI approach. Average estimates of similarity were derived from each of these matrices by

first applying a Fisher-Z transform to entire matrix, and removing the diagonal and upper triangle [32], leaving only one estimate of

similarity between every pairwise combination of voxels, which were then averaged to produce an overall estimate of inter-voxel

similarity. Averaged estimates of inter-voxel similarity were calculated per head/tail, hemisphere, and participant. These estimates

were then submitted to a repeated-measures ANOVAwith axis, hemisphere, and condition as factors. The individual correlation plots

presented in the manuscript were created using [33].

Another measure of similarity was also calculated to better capture the temporal autocorrelation present in the hippocampus. This

measure is independent from the initial measure of inter-voxel similarity, which captures the degree towhich each voxel’s time course

correlates with the time course of every other voxel in the mask. Temporal autocorrelation instead reflects the average similarity

within each voxel from time 1 to time 2. Admittedly, the temporal resolution available to fMRI is quite poor relative to electrophysi-

ological measures in animals (e.g., maximum sampling rate of 0.5 HZ in present study, relative to high frequency electrophysiological

recordings). However, the prevalence of this kind of measure in the rodent literature warranted the use of a conceptually similar mea-

sure in fMRI which would be sensitive to temporal autocorrelations despite being at a much coarser scale. Temporal autocorrelation

was determined by calculating the Pearson correlation between the activity for each voxel within each hippocampal mask at TR 1

with the same set of voxels’ activity at TR 2. This produced n - 1 estimates of similarity, where n is equal to the number of TRs

per functional run, each representing how correlated all of the voxels were with themselves from time 1 to time 2 (i.e., temporal

autocorrelation). These estimates were averaged per functional run, producing a single measure of autocorrelation per head/tail,

hemisphere, functional run corresponding to a specific navigational condition, and participant. These estimates were then submitted

to a repeated-measures ANOVA with the same factors as described above.
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Temporal Autocorrelation across different Temporal Separations

To investigate the evolution of the autocorrelation signal over multiple time points rather than exclusively looking at one temporal

separation (i.e., lag), we additionally calculated temporal autocorrelation for each of the 6 segments across 4 temporal separations

(1 TR, 2 TRs, 3 TRs, and 4 TRs). For example, for the 1 TR separation, TR1 would be correlated with TR2 and TR2 with TR3; for

the 2 TR separation, TR1 would be correlated with TR3, TR2 with TR4, etc. The results of this analysis are presented in Figures

S2D and S2E.

To better illustrate the data, we extracted mean autocorrelation values per temporal separation for each of the axial segments. To

be able to directly compare these values, we then standardized the autocorrelation values within each condition for each temporal

separation. We then calculated the mean standardized autocorrelation across the four temporal separations for each of the

navigation conditions and during rest (Figures S2F and S2G).

Native Space Masks
Native space hippocampal and parahippocampal cortexmaskswere extracted using FreeSurfer [17]. Hippocampal maskswere then

split into anterior and posterior segmentsmanually, by using the position of the uncal apex as a conventional anatomical landmark [2].

Parahippocampal masks were split into anterior and posterior segments at the middle volume along their anterior-posterior extent.

To further probe the degree of similarity between voxels along the hippocampal anteroposterior axis irrespective of specific

anatomical landmarks, we divided the hippocampal masks into smaller segments. We divided each participant’s bilateral hippocam-

pal masks into 6 segments along the anteroposterior axis. The location of the uncal apex, used to split the hippocampus into anterior

and posterior portions, relative to these segments, is overlaid on an example participant’s parcellation in Figure 4 in the main manu-

script. We then again calculated inter-voxel similarity in the navigation and resting state experiments (see Figures S2 and S3).

Accounting for Hippocampal Shape in 2- and 6-Segment Parcellations
To exclude the possibility that the shape of the hippocampus contributed to our estimates of inter-voxel similarity and temporal auto-

correlation, we accounted for the average distance between voxels in the x-, y-, and z-directions (see Figure S3). For example, the

voxels in aHPC are closer to one another than voxels in pHPC, as pHPC ismore elongated in the anteroposterior direction (Table S1).

This average difference in distance between voxels may influence the similarity between voxel time courses within aHPC and pHPC

ROIs. To exclude this as a possibility, we calculated the distance between individual voxels in the x-, y-, and z-directions, for both

the 2 and 6-segment analyses, and included them in the existing model. Specifically, we took the x-, y- and z- coordinates for each

voxel in a ROI, then calculated the absolute deviation between each voxel coordinate and the mean coordinate across all voxels, per

direction, for each subject-specific mask. These deviations were then averaged per ROI, producing an estimate of the average dis-

tance (or, deviation in voxels) from the midpoint for the x-, y- and z- directions. We ran linear mixed effects models (R package ‘nlme’

[36]) predicting inter-voxel similarity and temporal autocorrelation from axis and hemisphere, with x-, y-, and z-distance values as

covariates (akin to an ANCOVA).

Control Region of Interest: Parahippocampal Cortex
We sought to determine whether our findings were unique to the hippocampus, as would be suggested by the literature on place cells

[9–11], or whether they captured a more general anteroposterior organizing principle of the brain not restricted to the hippocampus.

An ideal control region would be a proximal extrahippocampal region that is highly connected to the hippocampus, providing a

conservative test of whether the observed anteroposterior differences extend to a highly-connected neighboring region. We identi-

fied the parahippocampal cortex (PHC) as a control region corresponding to these criteria, as it is frequently involved in spatial

processing [40, 41] and is highly coupled with the hippocampus [20]. Critically, the common long-axis orientation between the

hippocampus and PHC (Figure S4) made the latter an ideal control to test whether general signal properties along the anteroposterior

axis of the brainmight account for the results presented here. Therefore, we divided participant-specific PHCmasks into anterior and

posterior portions (at the midpoint along the y axis), per hemisphere, and calculated inter-voxel similarity and temporal autocorrela-

tion analyses on both the navigation and resting state datasets.

We directly compared aHPC and pHPC to anterior and posterior PHC (aPHC, pPHC) using 2 (region: HPC, PHC) x 2 (axis: anterior,

posterior) x 2 (hemisphere: left, right) repeated-measures ANOVAs on measures of inter-voxel similarity and temporal

autocorrelation.

Task Analysis
To examine whether hippocampal dynamics weremodulated by task demands, we conducted additional mixed ANOVAs comparing

the effects of hemisphere (left, right; within-subject), axis (anterior, posterior; within-subject), and task (navigation, rest; between-

subject) on intervoxel similarity and temporal autocorrelation (Figure S4).

Spatial and Temporal Signal-to-Noise Ratio along the Hippocampal Axis
Spatial SNRwas derived fromparticipant-specific structural volumes, where themean signal intensity for each hippocampal ROIwas

divided by the voxel-wise standard deviation from signal observed in a manually-placed control ROI outside of the brain (Table S2).

The control ROI was a sphere with a 9 voxel radius (i.e., # of voxels = 3071, 1mm isotropic voxels), andwas positioned per participant

such that it was non-overlapping with the head or any ringing artifact, permitting an appropriate estimation of the extraneous
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variability present in our structural images. To address the possibility that greater spatial SNR in the pHPC contributed to our

functional results, we ran two linear mixed effects where we added SNR as covariates to axis and hemisphere, predicting inter-voxel

similarity and temporal autocorrelation.

Temporal SNR was calculated using AFNI (3dTstat -cvarinvNOD), which defines SNR as the mean of each voxel’s time course

divided by its standard deviation. SNR was calculated for left and right anterior and posterior hippocampal voxels and averaged

per participant within each ROI using this approach (Table S3). For the navigation data, SNR was additionally averaged across

conditions, as no condition-specific effects were expected. We first entered temporal SNR as the dependent variable in a linear

mixed effects model with axis (aHPC, pHPC) and hemisphere (L, R) as factors. We next ran two linear mixed effects where we added

SNR as covariates to axis and hemisphere, predicting inter-voxel similarity and temporal autocorrelation (mirroring the ANCOVA-like

analysis applied to account for hippocampal shape; Figure S3).

DATA AND SOFTWARE AVAILABILITY

The code to run the analysis is available on GitHub (https://github.com/ivabrunec/Voxel_Temporal_Patterns). The fMRI data from the

experiment is available upon request.
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