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Introduction
The integration of spatial and temporal
information is crucial for efficient spa-
tial navigation and episodic memory.
Spatial coding relies on a joint represen-
tation of the environment by hippocam-
pal place cells and entorhinal grid cells
in rodents (Buzsáki and Moser, 2013).
This notion is supported by evidence
from human intracranial recordings
(Miller et al., 2013) and neuroimaging
and neuropsychological studies (Spiers
and Barry, 2015; Moscovitch et al.,
2016). More recently, cells coding for
time elapsed in an interval (time cells)
have also been reported in the rodent
hippocampus (Pastalkova et al., 2008;
MacDonald et al., 2011) and entorhinal
cortex (Kraus et al., 2015).

A key question is how this temporal
code is supported by ensemble dynamics
of hippocampal subfields. Time cells had
previously been reported only in CA1 of
the hippocampus, consistent with the no-
tion that CA1 neurons code for sequential

events (Farovik et al., 2010; Allen et al.,
2016) and that connections between the
medial entorhinal cortex (MEC) and CA1
support associations across temporal in-
tervals (Kitamura et al., 2014). In a recent
issue of The Journal of Neuroscience, Salz et
al. (2016) reported evidence of time cells
in CA3, taking an important step toward
understanding how space and time are
represented by the hippocampus.

Salz et al. (2016) recorded from cells in
CA1 and CA3 while rats alternated be-
tween running on a treadmill and travers-
ing a track. Temporal coding by time cells
was assessed during treadmill running
when the rats’ spatial position remained
stable, whereas spatial coding by place
cells was assessed during track traversal.
Salz et al. (2016) found that time cell cod-
ing in CA3 closely resembled that in CA1.
Similar numbers of neurons encoded time
in both subfields, with comparable peak
firing rates and mean field width (dura-
tion coded by each cell). This resembled
the findings for spatial coding, where sim-
ilar numbers of CA1 and CA3 neurons
were place cells, with comparable field
widths (distance coded by each cell), but
CA3 neurons showed significantly higher
peak firing rates. In both subfields, how-
ever, cell field widths were significantly
larger during temporal relative to spatial
coding when time was converted to dis-
tance traversed, highlighting less precise
temporal than spatial coding resolution.

Temporal field resolution progressively
decreased in both subfields throughout
the elapsed interval, replicating past find-
ings (MacDonald et al., 2011).

Time and space therefore appear to be
encoded similarly by CA1 and CA3. This
finding, however, raises the fundamental
question of how CA1 and CA3 might dif-
fer. Do time and place cells in CA1 and
CA3 serve different functional purposes,
and what are the conditions in which dif-
ferences between CA1 and CA3 temporal
and spatial codes might be observed? Pre-
dictions can be made about the differ-
ences in the functional purpose of
temporal coding in CA1 and CA3 based
on their respective connectivity within the
entorhinal-hippocampal circuit.

Subfield-specific cortical interactions
and coding dynamics
CA1 receives input from CA3 and layer III
of the MEC, whereas CA3 receives input
from layer II of the MEC via the dentate
gyrus (Fig. 1). Past research showed that
removing the connection between layer
III of the MEC and CA1 degraded spatial
coding in CA1 (Brun et al., 2008), al-
though it was preserved in CA3. In line
with this observation, it may be predicted
that disrupting the connection between
the MEC and CA1 would result in de-
creased resolution of temporal coding in
CA1, without affecting temporal coding
in CA3. CA1 is thought to act as a compar-
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ator between current input from the MEC
and representations of past experience
stored in DG-CA3 (Vinogradova, 2001;
Lee et al., 2004). The hypothesis by Salz et
al. (2016) that temporal input to the hip-
pocampus originates from the MEC may
be extended, such that lesions to the
MEC-CA1 pathway may conceivably pre-
serve online temporal coding in CA3 but
abolish comparisons between incoming
MEC input with stored duration repre-
sentations. For example, if an animal with
a lesion to its CA1 was exposed to two
different treadmill durations, normal
time cell activity while running would be
predicted in CA3, but the animal would
later be unable to discriminate between
the two experiences.

Stability and retrieval of spatial and
temporal representations
The issue of stored temporal and spatial
representations leads to a second impor-
tant question about the difference in hip-
pocampal temporal and spatial codes: the
stability, or robustness of reinstatement,
of spatial versus temporal fields. As Salz et
al. (2016) report, place fields are consis-
tently present across tasks, but time fields
are not. Their compelling explanation is
that space is inherently structured, but
time is not. This notion is further sup-
ported by the finding that temporal
coding resolution decreases over the
course of an interval because relatively few
temporal cues are present, whereas spatial
resolution is maintained because of the
constant stream of spatial cues. Imposing
different temporal structures on a task
would provide crucial insight into
whether temporal fields might emerge
and how stable they would be.

Previous research has shown that CA1
time cells “re-time” for different treadmill
running speeds (Kraus et al., 2015). The

properties of re-timing would be expected
to differ between CA1 and CA3 based on
differences reported in spatial coding.
Specifically, when relatively minor envi-
ronmental cues are altered, the popula-
tion spatial code tends to remain more
coherent in CA3, relative to CA1. When
large-scale spatial landmarks are changed,
however, the representation in CA3 rap-
idly shifts to a new neuronal population
but scales linearly with the degree of
change in CA1 (Guzowski et al., 2004).
Assuming that hippocampal spatial and
temporal coding shares similar dynamics,
these tendencies should also be reflected
in the remapping of temporal informa-
tion. If the temporal structure of two ex-
periences was very different (e.g., highly
different treadmill run durations), a dras-
tic shift should be observed in the CA3
neuronal population carrying a particular
temporal code, whereas similar temporal
structure should bias CA3 toward main-
taining the same neuronal ensemble be-
tween the two treadmills. Combining this
notion of firing field stability with the
connectivity of the two subfields opens
new avenues for research into multiday
dynamics, as pointed out by Salz et al.
(2016).

Temporally structured experiences
Many experiences beyond spatial naviga-
tion follow a clear temporal structure in
terms of both their duration and the order
in which elements occur. We structure
our lives in time, possibly as much as in
space. Recent human neuroimaging stud-
ies have started uncovering hippocampal
involvement in memory for sequential
events (Hsieh et al., 2014; DuBrow and
Davachi, 2016) and tracking the duration
of individual events (Barnett et al., 2014).

The resolution of neuroimaging stud-
ies does not yet allow us to make conclu-
sive claims about the flow of information
and how duration and sequence might be
integrated in the hippocampus. A recent
study, however, provided evidence using
fMRI in humans that CA1, but not CA3/
DG, processes the sequence (temporal or-
der) of events (Wang and Diana, 2016).
Sequence information mediated by CA1
thus appears to rely on a direct projection
from layer III of the EC and input of
stored representations from CA3. In con-
trast to duration processing, which Salz et
al. (2016) found to be processed similarly
in the two subfields, disambiguating the
order in which elements occurred close in
time might be more CA1-dependent.
CA1, but not CA3, was found to carry
information about sequence over longer

periods of time (Farovik et al., 2010). An
intriguing possibility based on the evi-
dence presented here is that stored tem-
poral representations in CA3 may be
associated over time through a joint
MEC-CA1 signal into a sequence of
events. Sequential coding necessarily in-
volves a relation between the current item
and some information stored in memory,
so CA1 is implicated. Conversely, tempo-
ral duration coding may be accomplished
without reference to other events, at least
for relatively short durations, and may
therefore rely on both CA1 and CA3. The
encoding of sequence information in CA1
may result, therefore, from the integra-
tion of sequential temporal firing fields,
which are then compared by CA1 so their
order can be established.

In conclusion, evidence for similar tem-
poral coding in CA1 and CA3 by Salz et al.
(2016) provides important insight into the
dynamics of hippocampal subfields in the
processing of space and time, and raises a
number of new questions. Evaluating the
conditions under which CA1 and CA3 differ
in their temporal coding properties would
elucidate the flow of temporal information
in the hippocampal-entorhinal circuit.
Identifying subfield-specific patterns of ac-
tivity for duration and sequence would
bring us closer to understanding how stored
representations are compared with ongoing
temporal processing. Finally, extending this
line of work to neuroimaging in humans
would enable the investigation of how sub-
episodes with individual durations are seg-
mented, yet bound into the flow of everyday
experience.
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